
DM865 – Spring 2020

Heuristics and Approximation Algorithms

(Stochastic) Local Search Algorithms

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Local Search Algorithms
Local Search RevisitedOutline

1. Local Search Algorithms

2. Local Search Revisited
Components

2



Local Search Algorithms
Local Search RevisitedOutline

1. Local Search Algorithms

2. Local Search Revisited
Components

3



Local Search Algorithms
Local Search RevisitedLocal Search

• Model

• Variables  solution representation, search space
• Constraints:

– implicit
– one-way defining invariants
– soft

• evaluation function

• Search (solve an optimization problem)
• Construction heuristics
• Neighborhoods, Iterative Improvement, (Stochastic) local search
• Metaheuristics: Tabu Search, Simulated Annealing, Iterated Local Search
• Population based metaheuristics

4



Local Search Algorithms
Local Search RevisitedLocal Search Algorithms

Given a (combinatorial) optimization problem Π and one of its instances π:

1 search space S(π)

• specified by the definition of (finite domain, integer) variables and their values handling implicit
constraints

• all together they determine the representation of candidate solutions
• common solution representations are discrete structures such as: sequences, permutations,

partitions, graphs

Note: solution set S ′(π) ⊆ S(π)

5



Local Search Algorithms
Local Search RevisitedLocal Search Algorithms (cntd)

2 evaluation function fπ : S(π)→ R

• it handles the soft constraints and the objective function

3 neighborhood function, Nπ : S → 2S(π)

• defines for each solution s ∈ S(π) a set of solutions N(s) ⊆ S(π) that are in some sense close to
s.

6



Local Search Algorithms
Local Search RevisitedLocal Search Algorithms (cntd)

Further components [according to [HS]]

4 set of memory states M(π)
(may consist of a single state, for LS algorithms that do not use memory)

5 initialization function init : ∅ → S(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over initial search positions and
memory states)

6 step function step : S(π)×M(π)→ S(π)×M(π)
(can be seen as a probability distribution Pr(S(π)×M(π)) over subsequent, neighboring
search positions and memory states)

7 termination predicate terminate : S(π)×M(π)→ {>,⊥}
(determines the termination state for each search position and memory state)

7



Local Search Algorithms
Local Search RevisitedLocal search — global view

c

s

Neighborhood graph
• vertices: candidate solutions (search

positions)

• vertex labels: evaluation function

• edges: connect “neighboring” positions

• s: (optimal) solution

• c: current search position

9



Local Search Algorithms
Local Search RevisitedLocal Search Algorithms

Note:

• Local search implements a walk through the neighborhood graph

• Procedural versions of init, step and terminate implement sampling from respective
probability distributions.

• Local search algorithms can be described as Markov processes:
behavior in any search state {s,m} depends only
on current position s
higher order MP if (limited) memory m.

10



Local Search Algorithms
Local Search RevisitedLocal Search (LS) Algorithm Components

Step function

Search step (or move):
pair of search positions s, s ′ for which
s ′ can be reached from s in one step, i.e., s ′ ∈ N(s) and
step({s,m}, {s ′,m′}) > 0 for some memory states m,m′ ∈ M.

• Search trajectory: finite sequence of search positions 〈s0, s1, . . . , sk〉 such that (si−1, si ) is a
search step for any i ∈ {1, . . . , k}
and the probability of initializing the search at s0
is greater than zero, i.e., init({s0,m}) > 0
for some memory state m ∈ M.

• Search strategy: specified by init and step function; to some extent independent of problem
instance and other components of LS algorithm.
• random
• based on evaluation function
• based on memory

11



Local Search Algorithms
Local Search RevisitedIterative Improvement

Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do

choose a neighbor s ′ of s such that f (s ′) < f (s)
s := s ′

• If more than one neighbor has better cost then need to choose one
(heuristic pivot rule)

• The procedure ends in a local optimum ŝ:
Def.: Local optimum ŝ w.r.t. N if f (ŝ) ≤ f (s) ∀s ∈ N(ŝ)

• Issue: how to avoid getting trapped in bad local optima?
• use more complex neighborhood functions
• restart
• allow non-improving moves

12



Local Search Algorithms
Local Search RevisitedMetaheuristics

• “Restart” + parallel search
Avoid local optima
Improve search space coverage

• Variable Neighborhood Search and Large Scale Neighborhood Search
diversified neighborhoods + incremental algorithmics
("diversified" ≡ multiple, variable-size, and rich).

• Tabu Search: Online learning of moves
Discard undoing moves,
Discard inefficient moves
Improve efficient moves selection

• Simulated annealing
Allow degrading solutions

18



Local Search Algorithms
Local Search RevisitedSummary: Local Search Algorithms

For given problem instance π:

1 search space Sπ, solution representation: variables + implicit constraints

2 evaluation function fπ : S → R, soft constraints + objective

3 neighborhood relation Nπ ⊆ Sπ × Sπ

4 set of memory states Mπ

5 initialization function init : ∅ → Sπ ×Mπ

6 step function step : Sπ ×Mπ → Sπ ×Mπ

7 termination predicate terminate : Sπ ×Mπ → {>,⊥}

19



Local Search Algorithms
Local Search RevisitedDecision vs Minimization

LS-Decision(π)
input: problem instance π ∈ Π
output: solution s ∈ S ′(π) or ∅
(s,m) := init(π)

while not terminate(π, s, m) do
(s,m) := step(π, s, m)

if s ∈ S ′(π) then
return s

else
return ∅

LS-Minimization(π′)
input: problem instance π′ ∈ Π′

output: solution s ∈ S ′(π′) or ∅
(s,m) := init(π′);
sb := s;
while not terminate(π′, s, m) do

(s,m) := step(π′, s, m);
if f (π′, s) < f (π′, sb) then

sb := s;

if sb ∈ S ′(π′) then
return sb

else
return ∅

However, the algorithm on the left has little guidance, hence most often decision problems are
transformed in optimization problems by, eg, couting number of violations.

20



Local Search Algorithms
Local Search RevisitedOutline

1. Local Search Algorithms

2. Local Search Revisited
Components

21



Local Search Algorithms
Local Search RevisitedLS Algorithm Components

Search space

Search Space

Solution representations defined by the variables and the implicit constraints:

• permutations (implicit: alldiffrerent)
• linear (scheduling problems)
• circular (traveling salesman problem)

• arrays (implicit: assign exactly one, assignment problems: GCP)

• sets (implicit: disjoint sets, partition problems: graph partitioning, max indep. set)

 Multiple viewpoints are useful in local search!

23



Local Search Algorithms
Local Search RevisitedLS Algorithm Components

Evaluation function

Evaluation (or cost) function:
• function fπ : Sπ → Q that maps candidate solutions of

a given problem instance π onto rational numbers (most often integer),
such that global optima correspond to solutions of π;

• used for assessing or ranking neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:
• Evaluation function: part of LS algorithm.
• Objective function: integral part of optimization problem.
• Some LS methods use evaluation functions different from given objective function (e.g.,

guided local search).

24



Local Search Algorithms
Local Search RevisitedConstrained Optimization Problems

Constrained Optimization Problems exhibit two issues:

• feasibility
eg, treveling salesman problem with time windows: customers must be visited within their
time window.

• optimization
minimize the total tour.

How to combine them in local search?

• sequence of feasibility problems
• staying in the space of feasible candidate solutions
• considering feasible and infeasible configurations

25



Local Search Algorithms
Local Search RevisitedConstraint-based local search

From Van Hentenryck and Michel

If infeasible solutions are allowed, we count violations of constraints.

What is a violation?
Constraint specific:

• decomposition-based violations
number of violated constraints, eg: alldiff

• variable-based violations
min number of variables that must be changed to satisfy c .

• value-based violations
for constraints on number of occurences of values

• arithmetic violations

• combinations of these

26



Local Search Algorithms
Local Search RevisitedConstraint-based local search

From Van Hentenryck and Michel

Combinatorial constraints

• alldiff(x1, . . . , xn):
Let a be an assignment with values V = {a(x1), . . . , a(xn)} and cv = #a(v , x) be the number
of occurrences of v in a.
Possible definitions for violations are:

• viol =
∑

v∈V I (max{cv − 1, 0} > 0) value-based
• viol = maxv∈V max{cv − 1, 0} value-based
• viol =

∑
v∈V max{cv − 1, 0} value-based

• # variables with same value, variable-based, here leads to same definitions as previous three

Arithmetic constraints

• l ≤ r  viol = max{l − r , 0}
• l = r  viol = |l − r |
• l 6= r  viol = 1 if l = r , 0 otherwise

27



Local Search Algorithms
Local Search RevisitedDefinitions

Neighborhood function

Neighborhood function N : Sπ → 2S

Also defined as: N : S × S → {T ,F} or N ⊆ S × S

• neighborhood (set) of candidate solution s: N(s) := {s ′ ∈ S | N (s, s ′)}
• neighborhood size is |N(s)|
• neighborhood is symmetric if: s ′ ∈ N(s)⇒ s ∈ N(s ′)

• neighborhood graph of (S ,N, π) is a directed graph: GN := (V ,A) with V = S and
(uv) ∈ A⇔ v ∈ N(u)
(if symmetric neighborhood  undirected graph)

28



Local Search Algorithms
Local Search Revisited

A neighborhood function is also defined by means of an operator (aka move).

An operator ∆ is a collection of operator functions δ : S → S such that

s ′ ∈ N(s) =⇒ ∃ δ ∈ ∆, δ(s) = s ′

Definition

k-exchange neighborhood: candidate solutions s, s ′ are neighbors iff s differs from s ′ in at most k
solution components

Examples:

• 2-exchange neighborhood for TSP
(solution components = edges in given graph)

29



Local Search Algorithms
Local Search RevisitedNeighborhood Operator

Goal: providing a formal description of neighborhood functions for the three main solution
representations:
• Permutation

• linear permutation: Single Machine Total Weighted Tardiness Problem
• circular permutation: Traveling Salesman Problem

• Assignment: SAT, CSP
• Set, Partition: Max Independent Set

A neighborhood function N : S → 2S is also defined through an operator.
An operator ∆ is a collection of operator functions δ : S → S such that

s ′ ∈ N(s) ⇐⇒ ∃δ ∈ ∆ | δ(s) = s ′

30



Local Search Algorithms
Local Search RevisitedPermutations

Sn indicates the set all permutations of the numbers {1, 2, . . . , n}

(1, 2 . . . , n) is the identity permutation ι.

If π ∈ Π(n) and 1 ≤ i ≤ n then:
• πi is the element at position i

• posπ(i) is the position of element i

Alternatively, a permutation is a bijective function π(i) = πi

The permutation product π · π′ is the composition (π · π′)i = π′(π(i))

For each π there exists a permutation such that π−1 · π = ι
π−1(i) = posπ(i)

∆N ⊂ Sn

31



Local Search Algorithms
Local Search RevisitedLinear Permutations

Swap operator
∆S = {δiS | 1 ≤ i ≤ n}

δiS(π1 . . . πiπi+1 . . . πn) = (π1 . . . πi+1πi . . . πn)

Interchange operator
∆X = {δijX | 1 ≤ i < j ≤ n}

δijX (π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

(≡ set of all transpositions)
Insert operator

∆I = {δijI | 1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= i}

δijI (π) =

{
(π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn) i < j
(π1 . . . πjπiπj+1 . . . πi−1πi+1 . . . πn) i > j

32



Local Search Algorithms
Local Search RevisitedCircular Permutations

Reversal (2-edge-exchange)
∆R = {δijR | 1 ≤ i < j ≤ n}

δijR(π) = (π1 . . . πi−1πj . . . πiπj+1 . . . πn)

Block moves (3-edge-exchange)

∆B = {δijkB | 1 ≤ i < j < k ≤ n}

δijB(π) = (π1 . . . πi−1πj . . . πkπi . . . πj−1πk+1 . . . πn)

Short block move (Or-edge-exchange)

∆SB = {δijSB | 1 ≤ i < j ≤ n}

δijSB(π) = (π1 . . . πi−1πjπj+1πj+2πi . . . πj−1πj+3 . . . πn)

33



Local Search Algorithms
Local Search RevisitedAssignments

An assignment can be represented as a mapping σ : {X1 . . .Xn} → {v : v ∈ D, |D| = k}:

σ = {Xi = vi ,Xj = vj , . . .}

One-exchange operator

∆1E = {δil1E | 1 ≤ i ≤ n, 1 ≤ l ≤ k}

δil1E
(
σ) =

{
σ′ : σ′(Xi ) = vl and σ′(Xj) = σ(Xj) ∀j 6= i

}
Two-exchange operator

∆2E = {δij2E | 1 ≤ i < j ≤ n}

δij2E (σ) =
{
σ′ : σ′(Xi ) = σ(Xj), σ

′(Xj) = σ(Xi ) and σ′(Xl) = σ(Xl) ∀l 6= i , j
}

34



Local Search Algorithms
Local Search RevisitedPartitioning

An assignment can be represented as a partition of objects selected and not selected
s : {X} → {C ,C} (it can also be represented by a bit string)

One-addition operator
∆1E = {δv1E | v ∈ C̄}

δv1E
(
s) =

{
s : C ′ = C ∪ v and C̄ ′ = C̄ \ v}

One-deletion operator
∆1E = {δv1E | v ∈ C}

δv1E
(
s) =

{
s : C ′ = C \ v and C̄ ′ = C̄ ∪ v}

Swap operator
∆1E = {δv1E | v ∈ C , u ∈ C̄}

δv1E
(
s) =

{
s : C ′ = C ∪ u \ v and C̄ ′ = C̄ ∪ v \ u}

35



Local Search Algorithms
Local Search RevisitedDefinitions

Definition:

• Local minimum: search position without improving neighbors wrt given evaluation function f
and neighborhood function N,
i.e., position s ∈ S such that f (s) ≤ f (s ′) for all s ′ ∈ N(s).

• Strict local minimum: search position s ∈ S such that f (s) < f (s ′) for all s ′ ∈ N(s).

• Local maxima and strict local maxima: defined analogously.

36


	Local Search Algorithms
	Local Search Revisited
	Components


