
DM865 – Spring 2020

Heuristics and Approximation Algorithms

Working Environment

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Working Environment
Random NumbersOutline

1. Working Environment

2. Random Numbers

2

Working Environment
Random NumbersOutline

1. Working Environment

2. Random Numbers

3

Working Environment
Random NumbersBuilding a Working Environment

What will you need during the project? How will you organize it? How will you make things work
together?

• src/ code that implements the algorithm (likely, several versions)
• bin/ place where to put your executables
• data/ input: Instances for the solver, parameters to guide the solver
• scripts/ code that runs batches of experiments or parses files
• log/ other log files produced by the run of the algorithm
• res/ output: The result, the performance measurements
• r/ analysis tools: statistics, data analysis, visualization
• doc/ or tex/ journal/report: A record of your experiments and findings, together with
description of the algorithms.

• Makefile compiles the sources in src and puts the executables in bin.
• README explains how to compile, test and run the program. Eventually, it explains differences
among versions.

 organize everything like if you had to reproduce the same results in a few years from now.
4

Working Environment
Random NumbersExample

Input controls on command line

xyz --main::instance ins1.txt --main::output-file log.txt --main::seed 12 > data.log

Output on stdout, self-describing

#stat instance.in 30 90
seed: 9897868
Parameter1: 30
Parameter2: A
Read instance. Time: 0.016001
begin try 1
best 0 col 22 time 0.004000 iter 0 par_iter 0
best 3 col 21 time 0.004000 iter 0 par_iter 0
best 1 col 21 time 0.004000 iter 0 par_iter 0
best 0 col 21 time 0.004000 iter 1 par_iter 1
best 6 col 20 time 0.004000 iter 3 par_iter 1
best 4 col 20 time 0.004000 iter 4 par_iter 2
best 2 col 20 time 0.004000 iter 6 par_iter 4
exit iter 7 time 1.000062
end try 1

6

Working Environment
Random NumbersExample

If a single program that implements many heuristics

• proceed for new versions but take old versions with a journal in archive.
Consider using a version control system (eg, git, svn).

• use command line parameters to choose among the heuristics

• Python: getopt, optparse
C: getopt, getopt_long, opag (option parser generator)
Java: package org.apache.commons.cli
EasyLocal: boost libraries

• use identifying labels in naming file outputs
Example:
c0010.i0002.t0001.s02010.log

7

org.apache.commons.cli

Working Environment
Random NumbersExample

• You will need:
multiple runs, multiple instances, multiple classes and multiple algorithms.
Arrange this outside of your program: è unix scripts (eg, bash one line program)

• Parse outputfiles:
Example
grep #stat * | cut -f 2 -d " "

See http://www.gnu.org/software/coreutils/manual/ for shell tools.

• Data in form of matrix or data frame goes directly into R imported by read.table(),
untouched by human hands!
alg instance run sol time
ROS le450_15a.col 3 21 0.00267
ROS le450_15b.col 3 21 0
ROS le450_15d.col 3 31 0.00267
RLF le450_15a.col 3 17 0.00533
RLF le450_15b.col 3 16 0.008
...

8

http://www.gnu.org/software/coreutils/manual/

Working Environment
Random NumbersText Editor

• vim (Vi IMproved)

• emacs, atom, spyder3, visual code, jupyter-lab, eclipse

• Integrated development environment. Choose your favourite:
http://en.wikipedia.org/wiki/Integrated_development_environment

9

http://en.wikipedia.org/wiki/Integrated_development_environment

Working Environment
Random NumbersGraphics

Visualization helps understanding

• Problem visualization (matplotlib, networkx, graphviz)

• Algorithm animation

• Results visualization: recommended R (more on this later)

10

Working Environment
Random NumbersTesting and Debugging

Manual testing

• Print at run time

• Debug in spyder3 or other IDE

• Plot the development of
• best visited solution quality
• current solution quality

over time and compare with other features of the algorithm.

• Take it well: it is like a detective job

11

Working Environment
Random NumbersBe Suspicious – Unit Testing Development

Automatic testing

• Check the correctness of your solutions at output everytime you do refactoring or new versions.

• edge cases: test of arguments or inputs that lead to undefined cases

• useful as silent documentation on the use of the code

• coverage: did things work before a change or was a certain aspect never tested?

In Python, assert throws AssertionError
In Python, module unittest: tests as methods of a Test class.
automates the calls to the test functions

12

Working Environment
Random NumbersCode Optimization

• Profile time consumption per program components

• under Linux and OSX: gprof
1 add flag -pg in compilation
2 run the program
3 gprof gmon.out > a.txt

• under OSX:

• Instruments

• Java VM profilers (plugin for eclipse)
http://visualvm.java.net/

13

http://visualvm.java.net/

Working Environment
Random NumbersProgram Profiling

cProfile
https://github.com/ymichael/cprofilev
https://jiffyclub.github.io/snakeviz/

14

https://github.com/ymichael/cprofilev
https://jiffyclub.github.io/snakeviz/

Working Environment
Random NumbersMeasuring Time

Execution time can be extremely short:

• put the statement to measure in a loop
• execute several times

Take minumum measured time to make sure other processes running on the computer do not
influence the measured result too much.

In Python, module timeit
The timer object has a function repeat that takes two parameters
repeat number of overall repetitions
number numer of iterations in the loop

15

Working Environment
Random NumbersMeasuring Memory Consumption

• In Unix (and MacOs) top

• In Python, python -m memory_profiler myscript
and memprof (for time dependent analysis)
https://pypi.python.org/pypi/memory_profiler

16

https://pypi.python.org/pypi/memory_profiler

Working Environment
Random NumbersSoftware Development

Extreme Programming & Scrum

Planning

Release planning creates the schedule • Make frequent small releases • The project is divided into
iterations • Publish early, revise often

Designing

Simplicity • No functionality is added early • Refactor: eliminate unused functionality and
redundancy

Coding

Code must be written to agreed standards • Code the unit test first • All production code is pair
programmed • Leave optimization till last • No overtime • Pair programming

Testing

All code must have unit tests • All code must pass all unit tests before it can be released • When a
bug is found tests are created

18

Working Environment
Random NumbersDevelopment of Heuristics

• Model

• implement

• experiment

• fail

• think

• try again!

19

Working Environment
Random NumbersOutline

1. Working Environment

2. Random Numbers

20

Working Environment
Random NumbersRandom Numbers

Carachtersitics of a good pseudo-random generator
(from stochastic simulation)

• long period

• uniform unbiased distribution

• uncorrelated (time series analysis)

• efficient

Suggested: MRG32k3a by L’Ecuyer http://www.iro.umontreal.ca/~lecuyer/

21

http://www.iro.umontreal.ca/~lecuyer/

Working Environment
Random NumbersIdeal Random Shuffle

Let’s consider a sequence of n elements: {e1, e2, . . . en}.
The ideal random shuffle is a permutation chosen uniformly at random from the set of all possible
n! permutations.

• π1 is uniformly randomly chosen among {e1, e2, . . . en}.
• π2 is uniformly randomly chosen among {e1, e2, . . . en} − {π1}.
• π3 is uniformly randomly chosen among {e1, e2, . . . en} − {π1, π2}
• ...

Joint probability of (π1, π2 . . . πn) is 1
n ·

1
n−1 · . . . 1 = 1

n!

long int* Random :: generate_random_array(const int& size) {
long int i, j, help;
long int *v = new long int[size];
for (i = 0 ; i < size; i++)

v[i] = i;
for (i = 0 ; i < size -1 ; i++) {

j = (long int) (ranU01() * (size - i));
help = v[i];
v[i] = v[i+j];
v[i+j] = help;

}
return v; } 22

Working Environment
Random NumbersReservoir Sampling

How to select an element at random from a sequence of n elements where n is unknown?

• Keep the first item in memory.
• When the i-th item arrives (for i > 1):

• with probability 1/i , keep the new item (discard the old one)

• with probability 1− 1/i keep the old item (ignore the new one)

Probability of an element to be selected:

Pr(being selected once) · Pr(not being swapped later) = 1 ·
n∏

i=2

(1− 1
i
)

23

Working Environment
Random Numbers

Extension:
How to select a sample of k elements from a sequence S of unknown length?

• Keep the first k items in memory.
• When the ith item arrives (for i > k):

• with probability k/i , keep the new item (discard an old one, selecting which to replace at
random, each with chance 1/k)

• with probability 1− k/i , keep the old items (ignore the new one)

For the first element of the sequence the probability of being selected is:

Pr(being selected first time) ·
|S|∏

i=k+1

Pr(not being swapped) = 1 ·
|S|∏

i=k+1

(
1− k

i
· 1
k

)
where

Pr(not being swapped) = 1− Pr(swapping exactly that one) = 1− k

i

1
k

Pr(not being swapped) = Pr(not swapping)+p(swapping one of the others) =
(
1− k

i

)
+

(
k

i

k − 1
k

)
24

Working Environment
Random Numbers

Implementation:

// S has items to sample , R will contain the result
ReservoirSample(S[1..n], R[1..k])

// fill the reservoir array
for i = 1 to k

R[i] := S[i]

// replace elements with gradually decreasing probability
for i = k+1 to n

j := random(1, i) // important: inclusive range
if j <= k

R[j] := S[i]

25

	Working Environment
	Random Numbers

